Tracing the Layers of Photodissociated Gas in the Trifid Nebula

Author:

Mookerjea BhaswatiORCID,Sandell GöranORCID

Abstract

Abstract Photodissociated gas bears the signature of the dynamical evolution of the ambient interstellar medium impacted by the mechanical and radiative feedback from an expanding H ii region. Here we present an analysis of the kinematics of the young Trifid Nebula, based on velocity-resolved observations of the far-infrared fine structure lines of [C ii] at 158 μm and [O i] at 63 μm. The distribution of the photodissociated regions (PDRs) surrounding the nebula is consistent with a shell-like structure created by the H ii region expanding at a velocity of 5 km s−1. Comparison of ratios of [C ii] and [O i]63 μm intensities for identical velocity components with PDR models indicate a density of 104 cm−3. The redshifted and blueshifted PDR shells with a combined mass of 516 M have a kinetic energy of ∼1047 erg. This is consistent with the thermal energy of the H ii region as well as with the energy deposited by the stellar wind luminosity from HD 169442A, an O7 V star, over the 0.5 Myr lifetime of the star. The observed momentum of the PDR shell is lower than what theoretical calculations predict for the radial momentum due to the shell being swept up by an expanding H ii region, which suggests that significant mass loss has occurred in M20 due to the dispersal of the surrounding gas by the advancing ionization front.

Funder

Department of Atomic Energy, Government of India

Publisher

American Astronomical Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3