Molecular gas in two companion cluster galaxies at z = 1.2

Author:

Castignani G.,Combes F.,Salomé P.,Andreon S.,Pannella M.,Heywood I.,Trinchieri G.,Cicone C.,Davies L. J. M.,Owen F. N.,Raichoor A.

Abstract

Context. Probing both star formation history and evolution of distant cluster galaxies is essential to evaluate the effect of dense environment on shaping the galaxy properties we observe today. Aims. We investigate the effect of cluster environment on the processing of the molecular gas in distant cluster galaxies. We study the molecular gas properties of two star-forming galaxies separated by 6 kpc in the projected space and belonging to a galaxy cluster selected from the Irac Shallow Cluster Survey, at a redshift z = 1.2, that is, ~ 2 Gyr after the cosmic star formation density peak. This work describes the first CO detection from 1 < z < 1.4 star-forming cluster galaxies with no clear reported evidence of active galactic nuclei. Methods. We exploit observations taken with the NOEMA interferometer at ~3 mm to detect CO(2−1) line emission from the two selected galaxies, unresolved by our observations. Results. Based on the CO(2−1) spectrum, we estimate a total molecular gas mass M(H2) = (2.2+0.50.4) × 1010 M, where fully excited gas is assumed, and a dust mass Mdust < 4.2 × 108 M for the two blended sources. The two galaxies have similar stellar masses and Hα-based star formation rates (SFRs) found in previous work, as well as a large relative velocity of ~400 km s−1 estimated from the CO(2−1) line width. These findings tend to privilege a scenario where both sources contribute to the observed CO(2−1). Using the archival Spitzer MIPS flux at 24 μm we estimate an SFR (24μm) = (28+12−8) M/yr for each of the two galaxies. Assuming that the two sources contribute equally to the observed CO(2−1), our analysis yields a depletion timescale of τdep = (3.9+1.4−1.8) × 108 yr, and a molecular gas to stellar mass ratio of 0.17 ± 0.13 for each of two sources, separately. We also provide a new, more precise measurement of an unknown weighted mean of the redshifts of the two galaxies, z = 1.163 ± 0.001. Conclusions. Our results are in overall agreement with those of other distant cluster galaxies and with model predictions for main sequence (MS) field galaxies at similar redshifts. The two target galaxies have molecular gas mass and depletion times that are marginally compatible with, but smaller than those of MS field galaxies, suggesting that the molecular gas has not been sufficiently refueled. We speculate that the cluster environment might have played a role in preventing the refueling via environmental mechanisms such as galaxy harassment, strangulation, ram-pressure, or tidal stripping. Higher-resolution and higher-frequency observations will enable us to spatially resolve the two sources and possibly distinguish between different gas processing mechanisms.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3