Affiliation:
1. International Centre for Radio Astronomy Research, The University of Western Australia , 35 Stirling Highway, Crawley, WA 6009, Australia
Abstract
ABSTRACT
We employ the eagle hydrodynamical simulation to uncover the relationship between cluster environment and H2 content of star-forming galaxies at redshifts spanning 0 ≤ z ≤ 1. To do so, we divide the star-forming sample into those that are bound to clusters and those that are not. We find that, at any given redshift, the galaxies in clusters generally have less H2 than their non-cluster counterparts with the same stellar mass (corresponding to an offset of ≲0.5 dex), but this offset varies with stellar mass and is virtually absent at M⋆ ≲ 109.3 M⊙. The H2 deficit in star-forming cluster galaxies can be traced back to a decline in their H2 content that commenced after first infall into a cluster, which occurred later than a typical cluster galaxy. Evolution of the full cluster population after infall is generally consistent with ‘slow-then-rapid’ quenching, but galaxies with M⋆ ≲ 109.5 M⊙ exhibit rapid quenching. Unlike most cluster galaxies, star-forming ones were not pre-processed in groups prior to being accreted by clusters. For both of these cluster samples, the star formation efficiency remained oblivious to the infall. We track the particles associated with star-forming cluster galaxies and attribute the drop in H2 mass after infall to poor replenishment, depletion due to star formation, and stripping of H2 in cluster environments. These results provide predictions for future surveys, along with support and theoretical insights for existing molecular gas observations that suggest there is less H2 in cluster galaxies.
Publisher
Oxford University Press (OUP)
Subject
Space and Planetary Science,Astronomy and Astrophysics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献