Structure of photodissociation fronts in star-forming regions revealed by Herschel observations of high-J CO emission lines

Author:

Joblin C.ORCID,Bron E.,Pinto C.,Pilleri P.,Le Petit F.,Gerin M.ORCID,Le Bourlot J.,Fuente A.,Berne O.,Goicoechea J. R.,Habart E.,Köhler M.,Teyssier D.ORCID,Nagy Z.,Montillaud J.,Vastel C.,Cernicharo J.ORCID,Röllig M.,Ossenkopf-Okada V.,Bergin E. A.

Abstract

Context. In bright photodissociation regions (PDR) associated with massive star formation, the presence of dense “clumps” that are immersed in a less dense interclump medium is often proposed to explain the difficulty of models to account for the observed gas emission in high-excitation lines. Aims. We aim to present a comprehensive view of the modelling of the CO rotational ladder in PDRs, including the high-J lines that trace warm molecular gas at PDR interfaces. Methods. We observed the 12CO and 13CO ladders in two prototypical PDRs, the Orion Bar and NGC 7023 NW using the instruments onboard Herschel. We also considered line emission from key species in the gas cooling of PDRs (C+, O, and H2) and other tracers of PDR edges such as OH and CH+. All the intensities are collected from Herschel observations, the literature and the Spitzer archive and were analysed using the Meudon PDR code. Results. A grid of models was run to explore the parameter space of only two parameters: thermal gas pressure and a global scaling factor that corrects for approximations in the assumed geometry. We conclude that the emission in the high-J CO lines, which were observed up to Jup = 23 in the Orion Bar (Jup = 19 in NGC 7023), can only originate from small structures with typical thicknesses of a few 10−3 pc and at high thermal pressures (Pth ~ 108 K cm−3). Conclusions. Compiling data from the literature, we find that the gas thermal pressure increases with the intensity of the UV radiation field given by G0, following a trend in line with recent simulations of the photoevaporation of illuminated edges of molecular clouds. This relation can help to rationalise the analysis of high-J CO emission in massive star formation and provides an observational constraint for models which study stellar feedback on molecular clouds.

Funder

Programme National ’Physique et Chimie du Milieu Interstellaire’ (PCMI) of CNRS

Deutsche Forschungsgemeinschaft

Spanish MINECO

FP7 Ideas: European Research Council

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 62 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3