Abundance of HCN and its C and N isotopologues in L1498

Author:

Magalhães V. S.,Hily-Blant P.,Faure A.,Hernandez-Vera M.,Lique F.

Abstract

The isotopic ratio of nitrogen in nearby protoplanetary disks, recently measured in CN and HCN, indicates that a fractionated reservoir of volatile nitrogen is available at the earliest stage of comet formation. This reservoir also presents a 3:1 enrichment in 15N relative to the elemental ratio of 330, identical to that between the solar system comets and the protosun, suggesting that similar processes are responsible for the fractionation in the protosolar nebula (PSN) and in these PSN analogs. However, where, when, and how the fractionation of nitrogen takes place is an open question. Previously obtained HCN/HC15N abundance ratios suggest that HCN may already be enriched in 15N in prestellar cores, although doubts remain on these measurements, which rely on the double-isotopologue method. Here we present direct measurements of the HCN/H13CN and HCN/HC15N abundance ratios in the L1498 prestellar core based on spatially resolved spectra of HCN(1–0), (3–2), H13CN(1–0), and HC15N(1–0) rotational lines. We use state-of-the-art radiative transfer calculations using ALICO, a 1D radiative transfer code capable of treating hyperfine overlaps. From a multiwavelength analysis of dust emission maps of L1498, we derive a new physical structure of the L1498 cloud. We also use new, high-accuracy HCN-H2 hyperfine collisional rates, which enable us to quantitatively reproduce all the features seen in the line profiles of HCN(1–0) and HCN(3–2), especially the anomalous hyperfine line ratios. Special attention is devoted to derive meaningful uncertainties on the abundance ratios. The obtained values, HCN/H13CN = 45 ± 3 and HCN/HC15N = 338 ± 28, indicate that carbon is heavily fractionated in HCN, but nitrogen is not. For the H13CN/HC15N abundance ratio, our detailed study validates to some extent analyses based on the single excitation temperature assumption. Comparisons with other measurements from the literature suggest significant core-to-core variability. Furthermore, the heavy 13C enrichment we found in HCN could explain the superfractionation of nitrogen measured in solar system chondrites.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3