On the low ortho-to-para H2 ratio in star-forming filaments

Author:

Lupi AlessandroORCID,Bovino Stefano,Grassi Tommaso

Abstract

The formation of stars and planetary systems is a complex phenomenon that relies on the interplay of multiple physical processes. Nonetheless, it represents a crucial stage for our understanding of the Universe, and in particular of the conditions leading to the formation of key molecules (e.g. water) on comets and planets. Herschel observations demonstrated that stars form in gaseous filamentary structures in which the main constituent is molecular hydrogen (H2). Depending on its nuclear spin H2 can be found in two forms: ‘ortho’ with parallel spins and ‘para’ where the spins are anti-parallel. The relative ratio among these isomers, the ortho-to-para ratio (OPR), plays a crucial role in a variety of processes related to the thermodynamics of star-forming gas and to the fundamental chemistry affecting the deuteration of water in molecular clouds, commonly used to determine the origin of water in Solar System bodies. Here, for the first time, we assess the evolution of the OPR starting from the warm neutral medium by means of state-of-the-art 3D magnetohydrodynamic simulations of turbulent molecular clouds. Our results show that star-forming clouds exhibit a low OPR (≪0.1) already at moderate densities (∼1000 cm−3). We also constrain the cosmic-ray ionisation rate, finding that 10−16 s−1 is the lower limit required to explain the observations of diffuse clouds. Our results represent a step forward in the understanding of the star and planet formation processes providing a robust determination of the chemical initial conditions for both theoretical and observational studies.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3