Testing analytical methods to derive the cosmic-ray ionisation rate in cold regions via synthetic observations

Author:

Redaelli E.ORCID,Bovino S.,Lupi A.ORCID,Grassi T.,Gaete-Espinoza D.ORCID,Sabatini G.ORCID,Caselli P.

Abstract

Context. Cosmic rays (CRs) heavily impact the chemistry and physics of cold and dense star-forming regions. However, the characterisation of their ionisation rate continues to pose a challenge from the observational point of view. Aims. In the past, a few analytical formulas have been proposed to infer the cosmic-ray ionisation rate, ζ2, from molecular line observations. These have been derived from the chemical kinetics of the involved species, but they have not yet been validated using synthetic data processed with a standard observative pipeline. In this work, we aim to bridge this gap. Methods. We performed a radiative transfer on a set of three-dimensional magneto-hydrodynamical simulations of prestellar cores, exploring different initial ζ2, evolutionary stages, types of radiative transfer (for instance assuming local-thermodynamic-equilibrium conditions), and telescope responses. We then computed the column densities of the involved tracers to determine ζ2, employing a recently proposed method based on the detection of H2D+. We compared this approach with a previous method, based on more common tracers. Both approaches are commonly used. Results. Our results confirm that the equation based on the detection of H2D+ accurately retrieves the actual ζ2 within a factor of two to three in the physical conditions explored in our tests. Since we have also explored a non-local thermodynamic equilibrium (non-LTE) radiative transfer, this work indirectly offers insights into the excitation temperatures of common transitions at moderate volume densities (n ≈ 105 cm−3). We also performed a few tests using a previous methodology that is independent of H2D+, which overestimates the actual ζ2 by at least two orders of magnitude. We considered a new derivation of this method, however, we found that it still leads to high over-estimations. Conclusions. The method based on H2D+ is further validated in this work and demonstrates a reliable method for estimating ζ2 in cold and dense gas. On the contrary, the former analytical equation, as already pointed out by its authors, has no global domain of application. Thus, we find that it ought to be employed with caution.

Funder

ANID Fondecyt Regular

ANID BASAL

MIUR

Istituto Nazionale di Astrofisica

Publisher

EDP Sciences

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A low cosmic-ray ionisation rate in the pre-stellar core Ophiuchus/H-MM1;Astronomy & Astrophysics;2024-08

2. Parsec-scale cosmic-ray ionisation rate in Orion;Astronomy & Astrophysics;2024-06-28

3. NEATH − III. A molecular line survey of a simulated star-forming cloud;Monthly Notices of the Royal Astronomical Society;2024-06-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3