Search of strong lens systems in the Dark Energy Survey using convolutional neural networks

Author:

Rojas K.ORCID,Savary E.,Clément B.,Maus M.,Courbin F.,Lemon C.,Chan J. H. H.,Vernardos G.,Joseph R.,Cañameras R.,Galan A.

Abstract

We present our search for strong lens, galaxy-scale systems in the first data release of the Dark Energy Survey (DES), based on a color-selected parent sample of 18 745 029 luminous red galaxies (LRGs). We used a convolutional neural network (CNN) to grade this LRG sample with values between 0 (non-lens) and 1 (lens). Our training set of mock lenses is data-driven, that is, it uses lensed sources taken from HST-COSMOS images and lensing galaxies from DES images of our LRG sample. A total of 76 582 cutouts were obtained with a score above 0.9, which were then visually inspected and classified into two catalogs. The first one contains 405 lens candidates, of which 90 present clear lensing features and counterparts, while the other 315 require more evidence, such as higher resolution imaging or spectra, to be conclusive. A total of 186 candidates are newly identified by our search, of which 16 are among the 90 most promising (best) candidates. The second catalog includes 539 ring galaxy candidates. This catalog will be a useful false positive sample for training future CNNs. For the 90 best lens candidates we carry out color-based deblending of the lens and source light without fitting any analytical profile to the data. This method is shown to be very efficient in the deblending, even for very compact objects and for objects with a complex morphology. Finally, from the 90 best lens candidates, we selected 52 systems with one single deflector to test an automated modeling pipeline that has the capacity to successfully model 79% of the sample within an acceptable computing runtime.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3