An extended scattered light disk around AT Pyx

Author:

Ginski C.,Gratton R.,Bohn A.,Dominik C.,Jorquera S.,Chauvin G.,Milli J.,Rodriguez M.,Benisty M.,Launhardt R.,Müller A.,Cugno G.,van Holstein R. G.,Boccaletti A.,Muro-Arena G. A.,Desidera S.,Keppler M.,Zurlo A.,Sissa E.,Henning T.,Janson M.,Langlois M.,Bonnefoy M.,Cantalloube F.,D’Orazi V.,Feldt M.,Hagelberg J.,Ségransan D.,Lagrange A-M.,Lazzoni C.,Meyer M.,Romero C.,Schmidt T. O. B.,Vigan A.,Petit C.,Roelfsema R.,Pragt J.,Weber L.

Abstract

Aims. To understand how the multitude of planetary systems that have been discovered come to be, we need to study systems at different evolutionary stages, with different central stars but also in different environments. The most challenging environment for planet formation may be the harsh UV radiation field of nearby massive stars which quickly erodes disks by external photo-evaporation. We observed the AT Pyx system, located in the head of a cometary globule in the Gum Nebula, to search for signs of ongoing planet formation. Methods. We used the extreme adaptive optics imager VLT/SPHERE in Dual Beam Polarization Imaging Mode in H-band as well as in IRDIFS Extended mode (K12-band imaging and Y-H integral field spectroscopy) to observe AT Pyx in polarized light and total intensity. Additionally, we employed VLT/NACO to observe the system in the L-band. Results. We resolve the disk around AT Pyx for the first time in scattered light across multiple wavelengths in polarized light and total intensity. We find an extended (≥126 au) disk, with an intermediate inclination of between 35° and 42°. The disk shows a complex substructure and we identify two or possibly three spiral-like features. Depending on the precise geometry of the disk (which we cannot unambiguously infer from our data), the disk may be eccentric with an eccentricity of ~0.16 or partially self-shadowed. The spiral features and possible eccentricity are both consistent with signatures of an embedded gas giant planet with a mass of ~1 MJup. Our own observations can rule out brown dwarf companions embedded in the resolved disk, but are nevertheless not sensitive enough to confirm or rule out the presence of a gas giant. Conclusions. AT Pyx is the first disk to be spatially resolved in a cometary globule in the Gum Nebula. By comparison with disks in the Orion Nebula Cluster we note that the extension of the disk may be exceptional for this environment if the external UV radiation field is indeed comparable to other cometary globules in the region. The signposts of ongoing planet formation are intriguing and need to be followed up with either higher sensitivity or at different wavelengths.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The SPHERE view of the Taurus star-forming region;Astronomy & Astrophysics;2024-05

2. Planet formation via pebble accretion in externally photoevaporating discs;Monthly Notices of the Royal Astronomical Society;2023-03-31

3. ISPY: NACO Imaging Survey for Planets around Young stars;Astronomy & Astrophysics;2023-01

4. A model grid for the reflected light from transition disks;Astronomy & Astrophysics;2022-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3