Planet formation via pebble accretion in externally photoevaporating discs

Author:

Qiao Lin1,Coleman Gavin A L1ORCID,Haworth Thomas J1ORCID

Affiliation:

1. Astronomy Unit, School of Physics and Astronomy, Queen Mary University of London , London E1 4NS, UK

Abstract

ABSTRACT We demonstrate that planet formation via pebble accretion is sensitive to external photoevaporation of the outer disc. In pebble accretion, planets grow by accreting from a flux of solids (pebbles) that radially drift inwards from the pebble production front. If external photoevaporation truncates the outer disc fast enough, it can shorten the time before the pebble production front reaches the disc outer edge, cutting off the supply of pebble flux for accretion, hence limiting the pebble mass reservoir for planet growth. Conversely, cloud shielding can protect the disc from strong external photoevaporation and preserve the pebble reservoir. Because grain growth and drift can occur quickly, shielding even on a short time-scale (<1 Myr) can have a non-linear impact on the properties of planets growing by pebble accretion. For example, a $10^{-3}\, \mathrm{ M}_{\oplus }$ planetary seed at 25 au stays at 25 au with a lunar mass if the disc is immediately irradiated by a 103 G0 field, but grows and migrates to be approximately Earth-like in both mass and orbital radius if the disc is shielded for just 1 Myr. In NGC 2024, external photoevaporation is thought to happen to discs that are <0.5 Myr old, which coupled with the results here suggests that the exact planetary parameters can be very sensitive to the star-forming environment. Universal shielding for time-scales of at least ${\sim} 1.5\,$ Myr would be required to completely nullify the environmental impact on planetary architectures.

Funder

Leverhulme Trust

BEIS

STFC

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3