MUSE crowded field 3D spectroscopy in NGC 300

Author:

González-Torà G.,Urbaneja M. A.,Przybilla N.,Dreizler S.,Roth M. M.,Kamann S.,Castro N.

Abstract

Aims.A quantitative spectral analysis of BA-type supergiants and bright giants in an inner spiral arm region of the nearby spiral galaxy NGC 300 is presented, based on observations with the Multi Unit Spectroscopic Explorer (MUSE) on the European Southern Obsevatory, Very Large Telescope. The flux-weighted gravity–luminosity relationship (FGLR), a stellar spectroscopic distance determination method for galaxies, is extended towards stars at lower luminosities.Methods.Point spread function fitting 3D spectroscopy was performed with PampelMUSE on the datacube. The 16 stars with the highest signal-to-noise ratios are classified with regard to their spectral type and luminosity class using Galactic templates. They were analysed using hybrid non-local thermodynamic equilibrium model spectra to fit the strongest observed hydrogen, helium, and metal lines in the intermediate-resolution spectra. Supplemented by photometric data, this facilitates fundamental stellar parameters and interstellar reddening which have yet to be determined.Results.Effective temperatures, surface gravities, reddeningE(BV), bolometric magnitudes and luminosities, as well as radii and masses are presented for the sample stars. The majority of the objects follow the FGLR as established from more luminous BA-type supergiants in NGC 300. An increase in the scatter in the flux-weighted gravity–luminosity plane is observed at these lower luminosities, which is in line with predictions from population synthesis models.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Quantitative spectroscopy of B-type supergiants;Astronomy & Astrophysics;2022-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3