New simulations of accreting DA white dwarfs: Inferring accretion rates from the surface contamination

Author:

Wachlin F. C.,Vauclair G.,Vauclair S.,Althaus L. G.

Abstract

Context.A non-negligible fraction of white dwarf stars show the presence of heavy elements in their atmospheres. The most accepted explanation for this contamination is the accretion of material coming from tidally disrupted planetesimals, which forms a debris disk around the star.Aims.We provide a grid of models for hydrogen-rich white dwarfs accreting heavy material. We sweep a 3D parameter space that has different effective temperatures, envelope hydrogen contents, and accretion rates. The grid is appropriate for determining accretion rates in white dwarfs that show the presence of heavy elements.Methods.Full evolutionary calculations of accreting white dwarfs were computed including all relevant physical processes, particularly the fingering (thermohaline) convection, a process neglected in most previous works, which has to be considered to obtain realistic estimations. Accretion is treated as a continuous process, and bulk-Earth composition is assumed for the accreted material.Results.We obtain final (stationary or near-stationary) and reliable abundances for a grid of models that represent hydrogen-rich white dwarfs of different effective temperatures and hydrogen contents, which we apply to various accretion rates.Conclusions.Our results provide estimates of accretion rates, accounting for thermohaline mixing, to be used for further studies on evolved planetary systems.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3