Astrochemical significance and spectroscopy of tetratomic [H, P, S, O]

Author:

Esposito V. J.ORCID,Friskey J. M.ORCID,Trabelsi T.ORCID,Francisco J. S.

Abstract

Context. Phosphorus is integral to life on Earth, and its role in the chemistry of the interstellar medium is highly debated and unknown. Only a handful of phosphorus-bearing species have been detected thus far, with the most recent confirmed detection taking place in 2014. The simultaneous detection of molecules such as PO, SH, and OH indicate the possibility of reactive intermediate species existing in the interstellar medium and circumstellar envelopes of evolved stars. To explore this possibility, the [H, P, S, O] tetratomic isomer family was characterized using high level ab initio methods. Aims. The aim of this study is to provide rotational, vibrational, and electronic spectroscopic data to drive experimental and observational detection of new phosphorus and sulfur-bearing molecules. Additionally, chemical pathways are explored to explain possible reservoirs for the as of yet undetected PH and PS diatomic molecules. Methods. Coupled cluster quantum chemistry methods were used to calculate the equilibrium electronic structure followed by the anharmonic treatment of the cubic and quartic force fields to obtain accurate rotational and vibrational data. Møller–Plesset perturbation theory in conjunction with coupled cluster methods were used to explore bimolecular reaction pathways. Multi-reference methods were then used to characterize the photochemical pathways of the excited electronic states and simulate the electronic absorption spectrum. Results. The reaction between detected molecules SH and PO is highly exothermic and forms the HSPO isomer. Deeply submerged transition state barriers allow for facile isomerization to other isomers, especially HOPS. The dominant photochemical process predicted for HOPS is dissociation to form OH + PS, while that of HSPO is a combination of photodissociation to form H + SPO and SH + PO, depending on the wavelength of light absorbed. If PH and PS are formed in the early outflows from evolved stars, bimolecular reactions may act as a reservoir and partially account for their lack of detection to date. The electronic absorption spectrum is predicted to be congested in the 175–200 nm region for both HOPS and HSPO. Differentiating peaks exist >400 nm, which can be used for spectral assignment. Vibrationally corrected rotational constants and anharmonic vibrational frequencies were calculated to assist in the laboratory and observation identification of the most stable molecules. The PO stretch is predicted to be the most intense vibrational mode in both HOPS isomers, and a frequency difference of 20 cm−1 may prove to help differentiate the conformers in an experimental spectrum.

Funder

National Science Foundation

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3