Dramatic effect of the nature of R on the intrinsic acidity and basicity of potential astrochemical R–C≡COH and R–C≡CSH compounds

Author:

Mó Otilia,Alkorta Ibon,Guillemin Jean-Claude,Yáñez Manuel

Abstract

AbstractThe effect of changing the nature of the R substituent from the first row (H, Li, BeH, BH2, CH3, NH2, OH and F) to second row (Na, MgH, AlH2, SiH3, PH2, SH and Cl) on the intrinsic acidity and basicity of R–C≡COH and R–C≡CSH compounds was investigated through the use of G4 high-levelab initiocalculation. The variation of the acidity and basicity of the R–C≡CSH derivatives as a function of R is practically parallel to that found for the corresponding R–C≡COH analogs; though the basicities of the former are 9–14% higher than those of the latter, the acidity gap being very small (~ 2%). When this analysis is extended to the derivatives in which the triple CC bond is replaced by a double or single bond, it is found that the acidity gap increases systematically as the CC bond goes from triple to single; whereas, as expected for the basicity, the trend is the opposite. Quite surprisingly, however, the variation of the basicity of R–C≡CX (X = OH, SH) compounds with the nature of the first-row substituents, R, is remarkably different from that produced by the second-row analogs. The same is observed as far as intrinsic acidities are concerned. These dissimilarities reflect the rather different changes in the strength of the CC and the CX (X = OH, SH) bonds when a first-row substituent is replaced by the second-row analog, as reflected in the atoms in molecules (AIM), natural bond orbital (NBO) and the electron localization function (ELF) analyses of the corresponding species.

Funder

Ministerio de Ciencia, Innovación y Universidades of Spain

Centre National d’Etudes Spatiales

Universidad Autónoma de Madrid

Publisher

Springer Science and Business Media LLC

Subject

Physical and Theoretical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3