Galactic and stellar perturbations of long-period comet motion

Author:

Dybczyński Piotr A.ORCID,Breiter SławomirORCID

Abstract

Context. Thanks to our expanding knowledge of the Galactic and stellar neighborhood of the Solar System, modern long-period comet motion studies must take into account both stellar perturbations and the overall Galactic potential. Aims. Our aim is to propose algorithms and methods that aid in performing numerical integrations of equations of motion for a small body of the Solar System that are much faster and with greater precision. Methods. We propose a new formulation of the equations of motion formulated in the Solar System barycentric frame, but one that accurately accounts for the differential perturbations caused by the Galactic potential. To make certain these equations are applied effectively, we provide numerical ephemerides of the Galactic positions of the Sun and a set of potential stellar perturbers. Results. The proposed methods raise the precision by several orders of magnitude and, simultaneously, greatly reduce the necessary CPU time. The application of this approach is presented with the example of a detailed dynamical study of the past motion of comet C/2015 XY1.

Funder

European Space Agency

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Reference31 articles.

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3