Important stellar perturbers found during the StePPeD database update based on Gaia EDR3 data

Author:

Dybczyński Piotr A.ORCID,Berski Filip,Tokarek JakubORCID,Podlewska-Gaca Edyta,Langner KrzysztofORCID,Bartczak PrzemysławORCID

Abstract

Context. In 2020, the initial version of the Stellar Potential Perturbers Database (StePPeD) was presented with the aim to deliver up-to-date information on the stars and stellar systems that may perturb a long-period comet motion. We used the minimal distance between a star and the Sun as a selecting tool when compiling a list of interesting objects with close encounters with the Solar System, and our selection for that study was based on Gαiα DR2 data. Aims. When the Gaia EDR3 data release was published, it became necessary to update this database. Additionally, we performed Monte Carlo simulations to obtain uncertainties on the parameters of the closest approach to the Sun of each object. Methods. We recalculated the close approach parameters of all stars in the previous StePPeD release, which resulted in removing approximately one-third of the total. Then we searched for new candidates in the whole Gaia EDR3 catalogue. We also take into account the duplicity of the found stars and additionally searched for double stars passing near the Sun which had been overlooked in previous papers. We also found the necessary mass estimates for new objects and updated this information for previously selected stars. Results. After a careful checking of all the collected data, we composed a new list of 155 potential stellar perturbers of the long-period comet motion. We applied a new threshold of 2 pc for the minimum star-Sun distance. This list consists of 146 single stars and nine multiple systems. For each object, we also estimated the uncertainty of the parameters of their closest approach to the Sun. Among these stars, we found a new potential strong past perturber, HD 7977, and confirmed the plausibility of a similar action on the part of Gliese 710 in the future.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3