The transfer of polarized radiation in resonance lines with partial frequency redistribution, J-state interference, and arbitrary magnetic fields

Author:

Alsina Ballester E.ORCID,Belluzzi L.ORCID,Trujillo Bueno J.ORCID

Abstract

Aims. We present the theoretical framework and numerical methods we have implemented to solve the problem of the generation and transfer of polarized radiation in spectral lines without assuming local thermodynamical equilibrium, while accounting for scattering polarization, partial frequency redistribution (due to both the Doppler effect and elastic collisions), J-state interference, and hyperfine structure. The resulting radiative transfer code allows one to model the impact of magnetic fields of an arbitrary strength and orientation through the Hanle, incomplete Paschen-Back, and magneto-optical effects. We also evaluate the suitability of a series of approximations for modeling the scattering polarization in the wings of strong resonance lines at a much lower computational cost, which is particularly valuable for the numerically intensive case of three-dimensional radiative transfer. Methods. We examine the suitability of the considered approximations by using our radiative transfer code to model the Stokes profiles of the Mg  II h & k lines and of the H I Lyman-α line in magnetized one-dimensional models of the solar atmosphere. Results. Neglecting Doppler redistribution in the scattering processes that are unperturbed by elastic collisions (i.e., treating them as coherent in the observer’s frame) produces a negligible error in the scattering polarization wings of the Mg II resonance lines and a minor one in the Lyman-α wings, although it is unsuitable to model the cores of these lines. For both lines, the scattering processes that are perturbed by elastic collisions only give a significant contribution to the intensity component of the emissivity. Neglecting collisional as well as Doppler redistribution (so that all scattering processes are coherent) represents a rough but suitable approximation for the wings of the Mg II resonance lines, but a very poor one for the Lyman-α wings. The magnetic sensitivity in the scattering polarization wings of the considered lines can be modeled by accounting for the magnetic field in only the ηI and ρV coefficients of the Stokes-vector transfer equation (i.e., using the zero-field expression for the emissivity).

Funder

European Research Council

Swiss National Science Foundation

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3