The Impact of Angle-dependent Partial Frequency Redistribution on the Scattering Polarization of the Solar Na i D Lines

Author:

Janett GioeleORCID,Alsina Ballester ErnestORCID,Belluzzi LucaORCID,del Pino Alemán TanausúORCID,Trujillo Bueno JavierORCID

Abstract

Abstract The long-standing paradox of the linear polarization signal of the Na i D1 line was recently resolved by accounting for the atom’s hyperfine structure and the detailed spectral structure of the incident radiation field. That modeling relied on the simplifying angle-averaged (AA) approximation for partial frequency redistribution (PRD) in scattering, which potentially neglects important angle–frequency couplings. This work aims at evaluating the suitability of a PRD-AA modeling for the D1 and D2 lines through comparisons with general angle-dependent (AD) PRD calculations in both the absence and presence of magnetic fields. We solved the radiative transfer problem for polarized radiation in a 1D semiempirical atmospheric model with microturbulent and isotropic magnetic fields, accounting for PRD effects and comparing PRD-AA and PRD-AD modelings. The D1 and D2 lines are modeled separately as a two-level atomic system with hyperfine structure. The numerical results confirm that a spectrally structured radiation field induces linear polarization in the D1 line. However, the PRD-AA approximation greatly impacts the Q/I shape, producing an antisymmetric pattern instead of the more symmetric PRD-AD one while presenting a similar sensitivity to magnetic fields between 10 and 200 G. Under the PRD-AA approximation, the Q/I profile of the D2 line presents an artificial dip in its core, which is not found for the PRD-AD case. We conclude that accounting for PRD-AD effects is essential to suitably model the scattering polarization of the Na i D lines. These results bring us closer to exploiting the full diagnostic potential of these lines for the elusive chromospheric magnetic fields.

Funder

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

EC ∣ ERC ∣ HORIZON EUROPE European Research Council

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3