Two-dimensional simulations of solar-like models with artificially enhanced luminosity

Author:

Le Saux A.,Guillet T.,Baraffe I.,Vlaykov D. G.,Constantino T.,Pratt J.,Goffrey T.,Sylvain M.,Réville V.,Brun A. S.

Abstract

Artificially increasing the luminosity and the thermal diffusivity of a model is a common tactic adopted in hydrodynamical simulations of stellar convection. In this work, we analyse the impact of these artificial modifications on the physical properties of stellar interiors and specifically on internal gravity waves. We perform two-dimensional simulations of solar-like stars with the MUSIC code. We compare three models with different luminosity enhancement factors to a reference model. The results confirm that properties of the waves are impacted by the artificial enhancement of the luminosity and thermal diffusivity. We find that an increase in the stellar luminosity yields a decrease in the bulk convective turnover timescale and an increase in the characteristic frequency of excitation of the internal waves. We also show that a higher energy input in a model, corresponding to a larger luminosity, results in higher energy in high frequency waves. Across our tests with the luminosity and thermal diffusivity enhanced together by up to a factor of 104, our results are consistent with theoretical predictions of radiative damping. Increasing the luminosity also has an impact on the amplitude of oscillatory motions across the convective boundary. One must use caution when interpreting studies of internal gravity waves based on hydrodynamical simulations with artificially enhanced luminosity.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3