Exoplanet cartography using convolutional neural networks

Author:

Meinke K.ORCID,Stam D. M.,Visser P. M.

Abstract

Context. In the near future, dedicated telescopes will observe Earth-like exoplanets in reflected parent starlight, allowing their physical characterization. Because of the huge distances, every exoplanet will remain an unresolved, single pixel, but temporal variations in the pixel’s spectral flux contain information about the planet’s surface and atmosphere. Aims. We tested convolutional neural networks for retrieving a planet’s rotation axis, surface, and cloud map from simulated single-pixel observations of flux and polarization light curves. We investigated the influence of assuming that the reflection by the planets is Lambertian in the retrieval while in reality their reflection is bidirectional, and the influence of including polarization. Methods. We simulated observations along a planet’s orbit using a radiative transfer algorithm that includes polarization and bidirectional reflection by vegetation, deserts, oceans, water clouds, and Rayleigh scattering in six spectral bands from 400 to 800 nm, at various levels of photon noise. The surface types and cloud patterns of the facets covering a model planet are based on probability distributions. Our networks were trained with simulated observations of millions of planets before retrieving maps of test planets. Results. The neural networks can constrain rotation axes with a mean squared error (MSE) as small as 0.0097, depending on the orbital inclination. On a bidirectionally reflecting planet, 92% of ocean facets and 85% of vegetation, deserts, and cloud facets are correctly retrieved, in the absence of noise. With realistic amounts of noise, it should still be possible to retrieve the main map features with a dedicated telescope. Except for face-on orbits, a network trained with Lambertian reflecting planets yields significant retrieval errors when given observations of bidirectionally reflecting planets, in particular, brightness artifacts around a planet’s pole. Including polarization improves the retrieval of the rotation axis and the accuracy of the retrieval of ocean and cloudy map facets.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3