Euclid preparation

Author:

,Lepori F.,Tutusaus I.,Viglione C.,Bonvin C.,Camera S.,Castander F. J.,Durrer R.,Fosalba P.,Jelic-Cizmek G.,Kunz M.,Adamek J.,Casas S.,Martinelli M.,Sakr Z.,Sapone D.,Amara A.,Auricchio N.,Bodendorf C.,Bonino D.,Branchini E.,Brescia M.,Brinchmann J.,Capobianco V.,Carbone C.,Carretero J.,Castellano M.,Cavuoti S.,Cimatti A.,Cledassou R.,Congedo G.,Conselice C. J.,Conversi L.,Copin Y.,Corcione L.,Courbin F.,Da Silva A.,Degaudenzi H.,Douspis M.,Dubath F.,Dupac X.,Dusini S.,Ealet A.,Farrens S.,Ferriol S.,Franceschi E.,Fumana M.,Garilli B.,Gillard W.,Gillis B.,Giocoli C.,Grazian A.,Grupp F.,Guzzo L.,Haugan S. V. H.,Holmes W.,Hormuth F.,Hudelot P.,Jahnke K.,Kermiche S.,Kiessling A.,Kilbinger M.,Kitching T.,Kümmel M.,Kurki-Suonio H.,Ligori S.,Lilje P. B.,Lloro I.,Mansutti O.,Marggraf O.,Markovic K.,Marulli F.,Massey R.,Maurogordato S.,Melchior M.,Meneghetti M.,Merlin E.,Meylan G.,Moresco M.,Moscardini L.,Munari E.,Nakajima R.,Niemi S. M.,Padilla C.,Paltani S.,Pasian F.,Pedersen K.,Percival W. J.,Pettorino V.,Pires S.,Poncet M.,Popa L.,Pozzetti L.,Raison F.,Rhodes J.,Roncarelli M.,Rossetti E.,Saglia R.,Schneider P.,Secroun A.,Seidel G.,Serrano S.,Sirignano C.,Sirri G.,Stanco L.,Starck J.-L.,Tallada-Crespí P.,Taylor A. N.,Tereno I.,Toledo-Moreo R.,Torradeflot F.,Valentijn E. A.,Valenziano L.,Wang Y.,Weller J.,Zamorani G.,Zoubian J.,Andreon S.,Bardelli S.,Fabbian G.,Graciá-Carpio J.,Maino D.,Medinaceli E.,Mei S.,Renzi A.,Romelli E.,Sureau F.,Vassallo T.,Zacchei A.,Zucca E.,Baccigalupi C.,Balaguera-Antolínez A.,Bernardeau F.,Biviano A.,Blanchard A.,Bolzonella M.,Borgani S.,Bozzo E.,Burigana C.,Cabanac R.,Cappi A.,Carvalho C. S.,Castignani G.,Colodro-Conde C.,Coupon J.,Courtois H. M.,Cuby J.-G.,Davini S.,de la Torre S.,Di Ferdinando D.,Farina M.,Ferreira P. G.,Finelli F.,Galeotta S.,Ganga K.,Garcia-Bellido J.,Gaztanaga E.,Gozaliasl G.,Hook I. M.,Ilić S.,Joachimi B.,Kansal V.,Keihanen E.,Kirkpatrick C. C.,Lindholm V.,Mainetti G.,Maoli R.,Martinet N.,Maturi M.,Metcalf R. B.,Monaco P.,Morgante G.,Nightingale J.,Nucita A.,Patrizii L.,Popa V.,Potter D.,Riccio G.,Sánchez A. G.,Schirmer M.,Schultheis M.,Scottez V.,Sefusatti E.,Tramacere A.,Valiviita J.,Viel M.,Hildebrandt H.

Abstract

Aims. We investigate the importance of lensing magnification for estimates of galaxy clustering and its cross-correlation with shear for the photometric sample of Euclid. Using updated specifications, we study the impact of lensing magnification on the constraints and the shift in the estimation of the best fitting cosmological parameters that we expect if this effect is neglected. Methods. We follow the prescriptions of the official Euclid Fisher matrix forecast for the photometric galaxy clustering analysis and the combination of photometric clustering and cosmic shear. The slope of the luminosity function (local count slope), which regulates the amplitude of the lensing magnification, and the galaxy bias have been estimated from the Euclid Flagship simulation. Results. We find that magnification significantly affects both the best-fit estimation of cosmological parameters and the constraints in the galaxy clustering analysis of the photometric sample. In particular, including magnification in the analysis reduces the 1σ errors on Ωm, 0, w0, wa at the level of 20–35%, depending on how well we will be able to independently measure the local count slope. In addition, we find that neglecting magnification in the clustering analysis leads to shifts of up to 1.6σ in the best-fit parameters. In the joint analysis of galaxy clustering, cosmic shear, and galaxy–galaxy lensing, magnification does not improve precision, but it leads to an up to 6σ bias if neglected. Therefore, for all models considered in this work, magnification has to be included in the analysis of galaxy clustering and its cross-correlation with the shear signal (3 × 2pt analysis) for an accurate parameter estimation.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Detecting relativistic Doppler by multi-tracing a single galaxy population;Physics of the Dark Universe;2024-12

2. Fast and spurious: a robust determination of our peculiar velocity with future galaxy surveys;Journal of Cosmology and Astroparticle Physics;2024-06-01

3. Lensing convergence and anisotropic dark energy in galaxy redshift surveys;Physics of the Dark Universe;2024-05

4. Gravitational redshift constraints on the effective theory of interacting dark energy;Journal of Cosmology and Astroparticle Physics;2024-05-01

5. Euclid preparation;Astronomy & Astrophysics;2024-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3