Fast and spurious: a robust determination of our peculiar velocity with future galaxy surveys

Author:

Lacasa FabienORCID,Bonvin CamilleORCID,Dalang CharlesORCID,Durrer RuthORCID

Abstract

Abstract To date, the most precise measurement of the observer's peculiar velocity comes from the dipole in the Cosmic Microwave Background (CMB). This velocity also generates a dipole in the source number counts, whose amplitude is governed not only by the observer velocity, but also by specific properties of the sources, that are difficult to determine precisely. Quantitative studies of the source number counts currently give dipoles which are reasonably well aligned with the CMB dipole, but with a significantly larger amplitude than that of the CMB dipole. In this work, we explore an alternative way of measuring the observer velocity from the source number counts, using correlations between neighboring spherical harmonic coefficients, induced by the velocity. We show that these correlations contain both a term sensitive to the source properties and another one directly given by the observer velocity. We explore the potential of a Euclid-like survey to directly measure this second contribution, independently of the characteristics of the population of sources. We find that the method can reach a precision of 4%, corresponding to a detection significance of 24σ, on the observer velocity. This will settle with precision the present “dipole tension”.

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3