Compact molecular gas emission in local LIRGs among low- and high-z galaxies

Author:

Bellocchi E.ORCID,Pereira-Santaella M.,Colina L.ORCID,Labiano A.ORCID,Sánchez-García M.ORCID,Alonso-Herrero A.ORCID,Arribas S.ORCID,García-Burillo S.ORCID,Villar-Martín M.ORCID,Rigopoulou D.,Valentino F.ORCID,Puglisi A.ORCID,Díaz-Santos T.,Cazzoli S.ORCID,Usero A.ORCID

Abstract

We present new CO(2–1) observations of a representative sample of 24 local (z < 0.02) luminous infrared galaxies (LIRGs) at high spatial resolution (< 100 pc) from the Atacama Large Millimeter/submillimeter Array (ALMA). Our LIRGs lie above the main sequence (MS), with typical stellar masses in the range 1010–1011M and SFR ∼ 30 M yr−1. We derive the effective radii of the CO(2–1) and the 1.3 mm continuum emissions using the curve-of-growth method. LIRGs show an extremely compact cold molecular gas distribution (median RCO ∼ 0.7 kpc), which is a factor 2 smaller than the ionized gas (median R ∼ 1.4 kpc), and 3.5 times smaller than the stellar size (median Rstar ∼ 2.4 kpc). The molecular size of LIRGs is similar to that of early-type galaxies (ETGs; RCO ∼ 1 kpc) and about a factor of 6 more compact than local spiral galaxies of similar stellar mass. Only the CO emission in low-z ULIRGs is more compact than these local LIRGs by a factor of 2. Compared to high-z (1 < z < 6) systems, the stellar sizes and masses of local LIRGs are similar to those of high-z MS star-forming galaxies (SFGs) and about a factor of 2–3 lower than submillimeter (submm) galaxies (SMGs). The molecular sizes of high-z MS SFGs and SMGs are larger than those derived for LIRGs by a factor of ∼3 and ∼8, respectively. Contrary to high-z SFGs and SMGs, which have comparable molecular and stellar sizes (median Rstar/RCO = 1.8 and 1.2, respectively), local LIRGs show more centrally concentrated molecular gas distribution (median Rstar/RCO = 3.3). A fraction of the low-z LIRGs and high-z galaxies share a similar range in the size of the ionized gas distribution, from 1 to 4 kpc. However, no LIRGs with a very extended (above 4 kpc) radius are identified, while for high-z galaxies no compact (less than 1 kpc) emission is detected. These results indicate that while low-z LIRGs and high-z MS SFGs have similar stellar masses and sizes, the regions of current star formation (traced by the ionized gas) and of potential star formation (traced by the molecular gas) are substantially smaller in LIRGs, and constrained to the central kiloparsec (kpc) region. High-z galaxies represent a wider population but their star-forming regions are more extended, even covering the entire extent of the galaxy. High-z galaxies have larger fractions of gas than low-z LIRGs, and therefore the formation of stars could be induced by interactions and mergers in extended disks or filaments with sufficiently large molecular gas surface density involving physical mechanisms similar to those identified in the central kpc of LIRGs.

Funder

Comunidad de Madríd, Attracción de Telento

Centro de Astrobiología-María de Maetzu

MCIU/AEI/FEDER,UE

Spanish Ministerio de Ciencia e Innovación

STFC

State Agency for Research of the Spanish MCIU through the Center of Excellence Severo Ochoa

Spanish Ministerio de Economía y Competitividad

Carlsberg Foundation Research

MCIN/AEI

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3