The IR Compactness of Dusty Galaxies Sets Star Formation and Dust Properties at z ∼ 0–2

Author:

McKinney JedORCID,Pope AlexandraORCID,Kirkpatrick AllisonORCID,Armus LeeORCID,Díaz-Santos TanioORCID,Gómez-Guijarro CarlosORCID,Franco MaximilienORCID,Elbaz DavidORCID,Hayward Christopher C.ORCID,Inami HanaeORCID,Popping GergöORCID,Xiao MengyuanORCID

Abstract

Abstract The surface densities of gas, dust, and stars provide a window into the physics of star formation that, until the advent of high-resolution far-IR/submillimeter observations, has been historically difficult to assess among dusty galaxies. To study the link between IR surface densities and dust properties, we leverage the Atacama Large Millimetre/Submillimetre Array archive to measure the extent of cold dust emission in 15 z ∼ 2 IR-selected galaxies selected on the basis of having available mid-IR spectroscopy from Spitzer. We use the mid-IR spectra to constrain the relative balance between dust heating from star formation and active galactic nuclei (AGNs), and to measure emission from polycylic aromatic hydrocarbons (PAHs), small dust grains that play a key role in the photoelectric heating of gas. In general, we find that dust-obscured star formation at high IR surface densities exhibits similar properties at low and high redshift, namely, local luminous IR galaxies (LIRGs) have comparable PAH luminosity to total dust mass ratios as high-z galaxies, and star formation at z ∼ 0–2 is more efficient at high IR surface densities despite the fact that our sample of high-z galaxies is closer to the main sequence than local LIRGs. High star formation efficiencies are coincident with a decline in the PAH-to-IR luminosity ratio reminiscent of the deficit observed in far-IR fine-structure lines. Changes in the gas and dust conditions arising from high star formation surface densities might help drive the star formation efficiency up. This could help explain the high efficiencies needed to reconcile star formation and gas volume densities in dusty galaxies at cosmic noon.

Funder

National Radio Astronomy Observatory

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3