Deep learning-based imaging in radio interferometry

Author:

Schmidt K.ORCID,Geyer F.ORCID,Fröse S.ORCID,Blomenkamp P.-S.ORCID,Brüggen M.,de Gasperin F.ORCID,Elsässer D.ORCID,Rhode W.

Abstract

Context. The sparse layouts of radio interferometers result in an incomplete sampling of the sky in Fourier space which leads to artifacts in the reconstructed images. Cleaning these systematic effects is essential for the scientific use of radiointerferometric images. Aims. Established reconstruction methods are often time-consuming, require expert knowledge, and suffer from a lack of reproducibility. We have developed a prototype deep learning-based method that generates reproducible images in an expedient fashion. Methods. To this end, we take advantage of the efficiency of convolutional neural networks to reconstruct image data from incomplete information in Fourier space. The neural network architecture is inspired by super-resolution models that utilize residual blocks. Using simulated data of radio galaxies that are composed of Gaussian components, we trained deep learning models whose reconstruction capability is quantified using various measures. Results. The reconstruction performance is evaluated on clean and noisy input data by comparing the resulting predictions with the true source images. We find that source angles and sizes are well reproduced, while the recovered fluxes show substantial scatter, albeit not worse than existing methods without fine-tuning. Finally, we propose more advanced approaches using deep learning that include uncertainty estimates and a concept to analyze larger images.

Funder

DFG

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3