CORALIE radial-velocity search for companions around evolved stars (CASCADES)

Author:

Pezzotti C.,Ottoni G.,Buldgen G.,Lyttle A.,Eggenberger P.,Udry S.,Ségransan D.,Mayor M.,Lovis C.,Marmier M.,Miglio A.,Elsworth Y.,Davies G. R.,Ball W. H.

Abstract

Context. Increasing the number of detected exoplanets is far from anecdotal, especially for long-period planets that require a long duration of observation. More detections imply a better understanding of the statistical properties of exoplanet populations, and detailed modelling of their host stars also enables thorough discussions of star–planet interactions and orbital evolution of planetary systems. Aims. In the context of the discovery of a new planetary system, we aim to perform a complete study of HD 29399 and its companion by means of radial-velocity measurements, seismic characterisation of the host-star, and modelling of the orbital evolution of the system. Methods. High-resolution spectra of HD 29399 were acquired with the CORALIE spectrograph mounted on the 1.2-m Swiss telescope located at La Silla Observatory (Chile) as part of the CASCADES survey. We used the moments of the cross-correlation function profile as well as the photometric variability of the star as diagnostics to distinguish between stellar and planetary-induced signals. To model the host star we combined forward modelling with global and local minimisation approaches and inversion techniques. We also studied the orbital history of the system under the effects of both dynamical and equilibrium tides. Results. We present the detection of a long-period giant planet. Combining these measurements with photometric observations by TESS, we are able to thoroughly model the host star and study the orbital evolution of the system. We derive stellar and planetary masses of 1.17 ± 0.10 M and 1.59 ± 0.08 MJup, respectively, and an age for the system of 6.2 Gyr. We show that neither dynamical nor equilibrium tides have been able to affect the orbital evolution of the planet. Moreover, no engulfment is predicted for the future evolution of the system.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Reference119 articles.

1. Aerts C., & Eyer L. 2000, in 6th Vienna workshop on delta Scuti and related stars, eds. Breger M., & Montgomery M. (Vienna: Astronomical Society of the Pacific), 113

2. The effective temperature scale of giant stars (F0–K5)

3. Determination of the spectroscopic stellar parameters for 257 field giant stars★

4. The Chemical Composition of the Sun

5. Astropy: A community Python package for astronomy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3