Revealing the Fate of Exoplanet Systems: Asteroseismic Identification of Host Star in the Red Clump or Red Giant Branch

Author:

Lin Wen-XuORCID,Qian Sheng-BangORCID,Zhu Li-YingORCID

Abstract

Abstract Determining the evolutionary stage of stars is crucial for understanding the evolution of exoplanetary systems. In this context, red giant branch (RGB) and red clump (RC) stars, which formed at stages in the later evolution of stars situated before and after the helium flash, harbor critical clues to unveiling the evolution of planets. The first step in revealing these clues is to confirm the evolutionary stage of the host stars through asteroseismology. However, up to now, host stars confirmed to be RGB or RC stars are extremely rare. In this investigation, we present a comprehensive asteroseismic analysis of two evolved stars, HD 120084 and HD 29399, known to harbor exoplanets, using data from the Transiting Exoplanet Survey Satellite. We have discovered for the first time that HD 120084 is an RC star in the helium-core-burning phase, and confirmed that HD 29399 is an RGB star in the hydrogen-shell burning phase. Through the precise measurement of asteroseismic parameters such as ν max , Δν, and ΔΠ1, we have determined the evolutionary states of these stars and derived their fundamental stellar parameters. The significance of this study lies in the application of automated techniques to measure asymptotic period spacings in red giants, which provides critical insights into the evolutionary outcomes of exoplanet systems. We demonstrate that asteroseismology is a potent tool for probing the internal structures of stars, thereby offering a window into the past and future dynamics of planetary orbits. The presence of a long-period giant planet orbiting HD 120084, in particular, raises intriguing questions about the potential engulfment of inner planets during the host star’s expansion, a hypothesis that warrants further investigation.

Publisher

American Astronomical Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3