Spicules and downflows in the solar chromosphere

Author:

Bose SouvikORCID,Joshi JayantORCID,Henriques Vasco M. J.ORCID,van der Voort Luc RouppeORCID

Abstract

Context. High-speed downflows have been observed in the solar transition region (TR) and lower corona for many decades. Despite their abundance, it has been hard to find signatures of such downflows in the solar chromosphere. Aims. In this work, we target an enhanced network region which shows ample occurrences of rapid spicular downflows in the Hα spectral line, which could potentially be linked to high-speed TR downflowing counterparts. Methods. We used the k-means algorithm to classify the spectral profiles of on-disk spicules in Hα and Ca II K data observed from the Swedish 1 m Solar Telescope and employed an automated detection method based on advanced morphological image processing operations to detect such downflowing features, in conjunction with rapid blue-shifted and red-shifted excursions (RBEs and RREs). Results. We report the existence of a new category of RREs (termed as downflowing RRE) for the first time that, contrary to earlier interpretation, are associated with chromospheric field aligned downflows moving toward the strong magnetic field regions. Statistical analysis performed on nearly 20 000 RBEs and 15 000 RREs (including the downflowing counterparts), which were detected in our 97 min long dataset, shows that the downflowing RREs are very similar to RBEs and RREs except for their oppositely directed plane-of-sky motion. Furthermore, we also find that RBEs, RREs, and downflowing RREs can be represented by a wide range of spectral profiles with varying Doppler offsets, and Hα line core widths, both along and perpendicular to the spicule axis, that causes them to be associated with multiple substructures which evolve together. Conclusions. We speculate that these rapid plasma downflows could well be the chromospheric counterparts of the commonly observed TR downflows.

Funder

Research Council of Norway

European Research Council SolarALMA grant

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3