On the Response of the Transition Region and the Corona to Rapid Excursions in the Chromosphere

Author:

Chaurasiya RaviORCID,Bayanna A. RajaORCID,Louis R. E.ORCID,Pereira T. M. D.ORCID,Mathew S. K.ORCID

Abstract

Abstract Spicules are the thin hair/grass-like structures that are prominently observed at the chromospheric solar limb. It is believed that fibrils and rapid blueshifted and redshifted excursions (RBEs and RREs; collectively referred to as REs) correspond to on-disk counterparts of type I spicules and type II spicules, respectively. Our investigation focuses on observing the response of these REs alongside similar spectral features in the chromosphere, transition region (TR), and corona, utilizing space–time plots derived from coordinated observations from the Swedish 1 m Solar Telescope/Hα, Interface Region Imaging Spectrograph (IRIS), and Solar Dynamics Observatory. Our analysis reveals upflowing REs, promptly reaching temperatures characteristic of the TR and corona, indicating a multithermal nature. Similarly, downflowing features exhibiting similar spectral signatures over the disk display plasma motion from the corona to chromospheric temperatures, demonstrating a multithermal nature. In addition to distinct upflows and downflows, we observe sequential upflow and downflow along the same path, depicting a distinctive parabolic trajectory in space–time plots of observations sampling TR and various coronal passbands. Similar to isolated upflows and downflows, these REs also exhibit a multithermal nature throughout their trajectory. Furthermore, our results reveal a more intricate motion of the REs in which both upflow and downflow coexist at the same spatial location. On a different note, our analysis, utilizing coordinated IRIS spectral observations, shows spatiotemporal redshifts/downflows in both the TR and chromosphere, suggesting that at least subsets of the strong redshifts/downflows observed in TR temperature spectra result from the return from the upper atmosphere flow of plasma in the form of bundles of spicules or features exhibiting similar spectra.

Publisher

American Astronomical Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3