Coronal mass ejection followed by a prominence eruption and a plasma blob as observed by Solar Orbiter

Author:

Bemporad A.ORCID,Andretta V.ORCID,Susino R.ORCID,Mancuso S.ORCID,Spadaro D.ORCID,Mierla M.,Berghmans D.,D’Huys E.,Zhukov A. N.,Talpeanu D.-C.,Colaninno R.,Hess P.,Koza J.,Jejčič S.,Heinzel P.,Antonucci E.,Da Deppo V.,Fineschi S.,Frassati F.,Jerse G.,Landini F.ORCID,Naletto G.,Nicolini G.,Pancrazzi M.,Romoli M.ORCID,Sasso C.ORCID,Slemer A.,Stangalini M.,Teriaca L.

Abstract

Context. On 2021 February 12, two subsequent eruptions occurred above the western limb of the Sun, as seen along the Sun-Earth line. The first event was a typical slow coronal mass ejection (CME), followed ∼7 h later by a smaller and collimated prominence eruption, originating south of the CME, followed by a plasma blob. These events were observed not only by the SOHO and STEREO-A missions, but also by the suite of remote-sensing instruments on board Solar Orbiter. Aims. We show how data acquired by the Full Sun Imager (FSI), the Metis coronagraph, and the Heliospheric Imager (HI) from the Solar Orbiter perspective can be combined to study the eruptions and different source regions. Moreover, we show how Metis data can be analyzed to provide new information about solar eruptions. Methods. Different 3D reconstruction methods were applied to the data acquired by different spacecraft, including remote-sensing instruments on board Solar Orbiter. Images acquired by the two Metis channels in the visible light (VL) and H I Ly-α line (UV) were combined to derive physical information about the expanding plasma. The polarization ratio technique was also applied for the first time to Metis images acquired in the VL channel. Results. The two eruptions were followed in 3D from their source region to their expansion in the intermediate corona. By combining VL and UV Metis data, the formation of a post-CME current sheet (CS) was followed for the first time in the intermediate corona. The plasma temperature gradient across a post-CME blob propagating along the CS was also measured for the first time. Application of the polarization ratio technique to Metis data shows that by combining four different polarization measurements, the errors are reduced by ∼5 − 7%. This constrains the 3D plasma distribution better.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3