Eruptive events with exceptionally bright emission in H I Ly-α observed by the Metis coronagraph

Author:

Russano G.ORCID,Andretta V.ORCID,De Leo Y.ORCID,Teriaca L.ORCID,Uslenghi M.ORCID,Giordano S.ORCID,Telloni D.ORCID,Heinzel P.ORCID,Jejčič S.ORCID,Abbo L.ORCID,Bemporad A.ORCID,Burtovoi A.ORCID,Capuano G. E.ORCID,Frassati F.ORCID,Guglielmino S. L.ORCID,Jerse G.ORCID,Landini F.ORCID,Liberatore A.ORCID,Nicolini G.ORCID,Pancrazzi M.ORCID,Romano P.ORCID,Sasso C.ORCID,Susino R.ORCID,Zangrilli L.ORCID,Da Deppo V.ORCID,Fineschi S.ORCID,Grimani C.ORCID,Moses J. D.,Naletto G.ORCID,Romoli M.ORCID,Spadaro D.ORCID,Stangalini M.ORCID

Abstract

Context. Ultraviolet (UV) emission from coronal mass ejections can provide information on the evolution of plasma dynamics, temperature, and elemental composition, as demonstrated by the UV Coronagraph Spectrometer (UVCS) on board the SOlar and Heliospheric Observatory (SOHO). Metis, the coronagraph on board Solar Orbiter, provides for the first time coronagraphic imaging in the UV H I Ly-α line and, simultaneously, in polarized visible light, thus providing a host of information on the properties of coronal mass ejections and solar eruptions such as their overall dynamics, time evolution, mass content, and outflow propagation velocity in the expanding corona. Aims. For this work, we analyzed six coronal mass ejections observed by Metis between April and October 2021, which are characterized by a very strong H I Ly-α emission. We studied in particular the morphology, kinematics, and the temporal and radial evolution of the emission of such events, focusing on the brightest UV features. Methods. The kinematics of the eruptive events under consideration were studied by determining the height-time profiles of the brightest parts on the Metis plane of the sky. Furthermore, the 3D positions in the heliosphere of the coronal mass ejections were determined by employing co-temporal images, when available, from two other coronagraphs: LASCO/C2 on board SOHO, and COR2 on board STEREO-A. In three cases, the most likely source region on the solar surface could be identified. Finally, the radiometrically calibrated Metis images of the bright UV features were analyzed to provide estimates of their volume and density. From the kinematics and radiometric analysis, we obtained indications of the temperatures of the bright UV cores of these events. These results were then compared with previous studies with the UVCS spectrocoronagraph. Results. The analysis of these strong UV-emitting features associated with coronal mass ejections demonstrates the capabilities of the current constellation of space coronagraphs, Metis, LASCO/C2, and COR2, in providing a complete characterization of the structure and dynamics of eruptive events in their propagation phase from their inception up to several solar radii. Furthermore, we show how the unique capabilities of the Metis instrument to observe these events in both the H I Ly-α line and polarized VL radiation allow plasma diagnostics on the thermal state of these events.

Funder

Agenzia Spaziale Italiana

Publisher

EDP Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3