Influence of grain growth on CO2 ice spectroscopic profiles

Author:

Dartois E.ORCID,Noble J. A.ORCID,Ysard N.ORCID,Demyk K.ORCID,Chabot M.

Abstract

Context. Interstellar dust grain growth in dense clouds and protoplanetary disks, even when moderate, affects the observed interstellar ice profiles as soon as a significant fraction of dust grains are in the size range close to the wave vector at the considered wavelength. The continuum baseline correction made prior to analysing ice profiles influences the subsequent analysis and hence the estimated ice composition, which are typically obtained by band fitting using thin film ice mixture spectra. Aims. We explore the effect of grain growth on the spectroscopic profiles of ice mantle constituents, focusing particularly on carbon dioxide, with the aim of understanding how it can affect interstellar ice mantle spectral analysis and interpretation. Methods. Using the discrete dipole approximation for scattering and absorption of light, the mass absorption coefficients of several distributions of grains – composed of ellipsoidal silicate cores with water and carbon dioxide ice mantles – are calculated. A few models also include amorphous carbon in the core and pure carbon monoxide in the ice mantle. We explore the evolution of the size distribution starting in the dense core phase in order to simulate the first steps of grain growth up to three microns in size. The resulting mass absorption coefficients are injected into RADMC-3D radiative transfer models of spherical dense core and protoplanetary disk templates to retrieve the observable spectral energy distributions. Calculations are performed using the full scattering capabilities of the radiative transfer code. We then focus on the particularly relevant calculated profile of the carbon dioxide ice band at 4.27 µm. Results. The carbon dioxide anti-symmetric stretching mode profile is a meaningful indicator of grain growth. The observed profiles towards dense cores obtained with the Infrared Space Observatory and Akari satellites already show profiles possibly indicative of moderate grain growth. Conclusions. The observation of true protoplanetary disks at high inclination with the James Webb Space Telescope should present distorted profiles that will allow constraints to be placed on the extent of dust growth. The more evolved the dust size distribution, the more the extraction of the ice mantle composition will require both understanding and taking grain growth into account.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3