Hunting for complex cyanides in protostellar ices with the JWST

Author:

Nazari P.ORCID,Rocha W. R. M.ORCID,Rubinstein A. E.ORCID,Slavicinska K.,Rachid M. G.ORCID,van Dishoeck E. F.ORCID,Megeath S. T.,Gutermuth R.,Tyagi H.,Brunken N.ORCID,Narang M.ORCID,Manoj P.ORCID,Watson D. M.,Evans N. J.ORCID,Federman S.,Muzerolle Page J.ORCID,Anglada G.,Beuther H.,Klaassen P.ORCID,Looney L. W.,Osorio M.,Stanke T.ORCID,Yang Y.-L.

Abstract

Nitrogen-bearing complex organic molecules have been commonly detected in the gas phase but not yet in interstellar ices. This has led to the long-standing question of whether these molecules form in the gas phase or in ices. The James Webb Space Telescope (JWST) offers the sensitivity, spectral resolution, and wavelength coverage needed to detect them in ices and investigate whether their abundance ratios are similar in gas and ice. We report the first tentative detection of CH3CN, C2H5CN and the simple molecule, N2O, based on the CN-stretch band in interstellar ices toward three (HOPS 153, HOPS 370, and IRAS 20126+4104) out of the five protostellar systems observed as part of the Investigating Protostellar Accretion (IPA) GO program with JWST-NIRSpec. We also provide upper limits for the two other sources with smaller luminosities in the sample. We detect OCN in the ices of all sources with typical CH3CN/OCN ratios of around 1. Ice and gas column density ratios of the nitrogen-bearing species with respect to each other are better matched than those with respect to methanol, which are a factor of ~5 larger in the ices than the gas. We attribute the elevated ice column densities with respect to methanol to the difference in snowline locations of nitrogen-bearing molecules and of methanol, biasing the gas-phase observations toward fewer nitrogen-bearing molecules. Moreover, we find tentative evidence of the enhancement of OCN, CH3CN, and C2H5CN in warmer ices; although, the formation of these molecules likely starts along with methanol in the cold prestellar phase. Future surveys combining NIRSpec and MIRI, and additional laboratory spectroscopic measurements of C2H5CN ice, are necessary for robust detection and conclusions on the formation history of complex cyanides.

Funder

Nederlandse Organisatie voor Wetenschappelijk Onderzoek

European Research Council

Netherlands Research School for Astronomy

Danmarks Grundforskningsfond

NASA

MCIN/AEI

Ministry of Education, Culture, Sports, Science, and Technology of Japan

Publisher

EDP Sciences

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3