A sequential acid-base mechanism in the interstellar medium: The emergence of cis-formic acid in dark molecular clouds

Author:

García de la Concepción J.,Jiménez-Serra I.,Corchado J. C.,Molpeceres G.,Martínez-Henares A.,Rivilla V. M.,Colzi L.,Martín-Pintado J.

Abstract

Context. The different abundance ratios between isomers of an organic molecule observed in the interstellar medium (ISM) provide valuable information about the chemistry and physics of the gas and the history of molecular clouds. In this context, the origin of an abundance of cis-formic acid (c-HCOOH) of only 6% the trans isomer (t-HCOOH) abundance in cold cores remains unknown. Aims. In this work, we aim to explain the presence of c-HCOOH in dark molecular clouds through the destruction and back formation of c-HCOOH and t-HCOOH in a cyclic process that involves HCOOH and highly abundant molecules such as HCO+ and NH3. Methods. We used high-level ab initio methods to compute the potential energy profiles for the cyclic destruction and formation routes of c-HCOOH and t-HCOOH. Accurate global rate constants and branching ratios are calculated based on the transition state theory and the master equation formalism under the typical conditions of the ISM. Results. The destruction of HCOOH by reaction with HCO+ in the gas phase leads to three isomers of the cation HC(OH)2+. The most abundant cation can react in a second step with other abundant molecules of the ISM such as NH3 to form back c-HCOOH and t-HCOOH. This mechanism explains the formation of c-HCOOH in dark molecular clouds. Considering this mechanism, the fraction of c-HCOOH with respect t-HCOOH is 25.7%. To explain the 6% reported by the observations, we propose that further destruction mechanisms of the cations of HCOOH by collisions with abundant molecules or interconversion reactions on dust grains should be taken into account. Conclusions. The sequential acid-base (SAB) mechanism proposed in this work involves fast processes with very abundant molecules in the ISM. Thus, HCOOH very likely suffers our proposed transformations in the conditions of dark molecular clouds such as B5 and L483. This is a new approach in the framework of the isomerism of organic molecules in the ISM, which has the potential to explain the ratio between isomers of organic molecules detected in the ISM.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3