Extremely high spectral resolution measurements of the 450 µm atmospheric window at Chajnantor with APEX,

Author:

Pardo J. R.,De Breuck C.,Muders D.,González J.,Montenegro-Montes F. M.,Pérez-Beaupuits J. P.,Cernicharo J.,Prigent C.,Serabyn E.,Mroczkowski T.,Phillips N.

Abstract

Ground-based telescopes observing at millimeter (mm) and submillimeter (submm) wavelengths have to deal with a line-rich and highly variable atmospheric spectrum, both in space and time. Models of this spectrum play an important role in planning observations that are appropriate for the weather conditions and also calibrating those observations. Through magnetic dipolar (M1) rotational transitions and electric dipolar (E1) transitions O2 and H2O, respectively, dominate the atmospheric opacity in this part of the electromagnetic spectrum. Although O2 lines, and more generally the so-called dry opacity, are relatively constant, the absorption related to H2O can change by several orders of magnitude leading from a totally opaque atmosphere near sea level with high H2O columns to frequency windows with good transmission from high and dry mountain sites. Other minor atmospheric gases, such as O3 and N2O among others, are present in the atmospheric spectrum which also includes nonresonant collision-induced absorption due to several mechanisms. The aim of our research is to improve the characterization of the mm/submm atmospheric spectrum using very stable heterodyne receivers with excellent sideband separation and extremely high (kHz) spectral resolutions at the 5000 m altitude Chajnantor site in northern Chile. This last aspect (spectral resolution) is the main improvement (by more than three orders of magnitude) in the presented data with respect to our previous work conducted ~20 yr ago from Mauna Kea in Hawai’i. These new measurements have enabled us to identify slight modifications needed in the Atmospheric Transmission at Microwaves (ATM) model to better take into account minor constituent vertical profiles, include a few missing lines, and adjust some high-energy O3 line frequencies. After these updates, the ATM model is highly consistent with all data sets presented in this work (within ~2% at 1 GHz resolution).

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Astronomical radio interferometry;Nature Reviews Methods Primers;2023-11-30

2. ALMA High-frequency Long Baseline Campaign in 2021: Highest Angular Resolution Submillimeter Wave Images for the Carbon-rich Star R Lep;The Astrophysical Journal;2023-11-01

3. The ALMA Interferometric Pipeline Heuristics;Publications of the Astronomical Society of the Pacific;2023-07-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3