Transmission spectroscopy of WASP-7 b with UVES

Author:

Rahmati HosseinORCID,Czesla Stefan,Khalafinejad Sara,Mollière Paul

Abstract

Context. Transmission spectroscopy is a prime technique to study the chemical composition and structure of exoplanetary atmospheres. Strong excess absorption signals have been detected in the optical Na i D1, 2 Fraunhofer lines during transits of hot Jupiters, which are attributed to the planetary atmospheres and allow us to constrain their structure. Aims. We study the atmosphere of WASP-7 b by means of high-resolution transit spectroscopy in the sodium lines. Methods. We analyzed a spectral transit time series of 89 high-resolution spectra of the hot Jupiter WASP-7 b that was observed using the Ultraviolet and Visual Echelle Spectrograph (UVES). We used the telluric lines for an accurate alignment of the spectra and carried out a telluric correction with molecfit. Stellar magnetic activity was monitored by investigating chromospheric lines such as the Ca ii H and K, and hydrogen Hα lines. Finally, we obtained transmission spectra and light curves for various lines. Results. The star shows no identifiable flares and, if any, marginal changes in activity during our observing run. The sodium transmission spectra and corresponding light curves clearly show signs of the Rossiter-McLaughlin effect and the stellar center-to-limb variation that we modeled using synthetic spectra. A statistically significant, narrow absorption feature with a line contrast of 0.50 ± 0.06% (at ~8.3σ level) and a full width at half maximum of 0.13 ± 0.02 Å is detected at the location of the Na i D2 line. For the Na i D1 line signal, we derived a line contrast of 0.13 ± 0.04% (at ~3.2σ level), which we consider a tentative detection. In addition, we provide upper limits for absorption by the hydrogen Balmer lines (Hα, Hβ, and Hγ), K i λ7699 Å, Ca ii H and K, and infra-red triplet lines.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The elusive atmosphere of WASP–12 b;Astronomy & Astrophysics;2024-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3