The elusive atmosphere of WASP–12 b

Author:

Czesla S.,Lampón M.ORCID,Cont D.ORCID,Lesjak F.ORCID,Orell-Miquel J.,Sanz-Forcada J.,Nagel E.ORCID,Nortmann L.,Molaverdikhani K.,López-Puertas M.,Yan F.,Quirrenbach A.,Caballero J. A.,Pallé E.,Aceituno J.,Amado P. J.,Henning Th.,Khalafinejad S.,Montes D.,Reiners A.,Ribas I.ORCID,Schweitzer A.ORCID

Abstract

To date, the hot Jupiter WASP–12 b has been the only planet with confirmed orbital decay. The late F-type host star has been hypothesized to be surrounded by a large structure of circumstellar material evaporated from the planet. We obtained two high-resolution spectral transit time series with CARMENES and extensively searched for absorption signals by the atomic species Na, H, Ca, and He using transmission spectroscopy, thereby covering the He I λ10833 Å triplet with high resolution for the first time. We apply SYSREM for atomic line transmission spectroscopy, introduce the technique of signal protection to improve the results for individual absorption lines, and compare the outcomes to those of established methods. No transmission signals were detected and the most stringent upper limits as of yet were derived for the individual indicators. Nonetheless, we found variation in the stellar Hα and He I λ10833 Å lines, the origin of which remains uncertain but is unlikely to be activity. To constrain the enigmatic activity state of WASP–12, we analyzed XMM-Newton X-ray data and found the star to be moderately active at most. We deduced an upper limit for the X-ray luminosity and the irradiating X-ray and extreme ultraviolet (XUV) flux of WASP–12 b. Based on the XUV flux upper limit and the lack of the He I λ10833 Å signal, our hydrodynamic models slightly favor a moderately irradiated planet with a thermospheric temperature of ≲12 000 K, and a conservative upper limit of ≲4 × 1012 g s−1 on the mass-loss rate. Our study does not provide evidence for an extended planetary atmosphere or absorption by circumstellar material close to the planetary orbit.

Publisher

EDP Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Exploring the ultra-hot Jupiter WASP-178b;Astronomy & Astrophysics;2024-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3