The galaxy-wide stellar initial mass function in the presence of cluster-to-cluster IMF variations

Author:

Dib SamiORCID

Abstract

We calculate the stellar integrated galactic initial mass function (IGIMF) in the presence of cluster-to-cluster variations of the IMF. Variations of the IMF for a population of coeval clusters that populate the initial cluster mass function (ICLMF) are taken into account in the form of Gaussian distribution functions of the IMF parameters. For the tapered power-law function used in this work, these are the slope at the high-mass end, Γ, the slope at the low-mass end, γ, and the characteristic mass Mch. The level of variations is modeled by varying the width of the Gaussian distributions. The reference values are the standard deviations of the parameters observed for the population of young clusters in the present-day Milky Way, which are σΓ = 0.6, σγ = 0.25, and σMch = 0.27 M. We find that increasing the levels of dispersion for γ and Γ tends to moderately flatten the IGIMF at the low and high-mass end, respectively. The characteristic mass of the IGIMF is, however, strongly impacted by variations in Mch. Increasing the value of σMch shifts the peak of the IGIMF to lower masses, rendering the IGIMF more bottom heavy. This can provide a simple explanation for the bottom-heavy stellar mass function that is inferred for early-type galaxies since these are likely the result of a merger of disk galaxies where the physical conditions of the star-forming gas may vary significantly both in time and space in the merging system. The effect of IMF variations on the IGIMF is compared to the effects of other processes and sources of systematic variations such as those due to variations in the shape of ICLMF, the gas-phase metallicity, and the galactic star formation rate (SFR) which can potentially affect the maximum mass of stellar clusters in a galaxy and set the mean value of the characteristic mass in clusters. For the various dependencies we have explored, we found that the effect of IMF variations is a dominant factor that always affects the characteristic mass of the IGIMF. For the regimes at low metallicity where the IGIMF resembles a single power law, an increased level of IMF variations renders the IGIMF steeper and more bottom heavy, especially at low SFRs. On the other hand, variations in the IMF in the high mass regime can be easily dominated by variations in the slope of the ICLMF. We compare our results of the metallicity and SFR-dependent IGIMF to a sample of Milky Way ultra-faint dwarf (UFD) satellite galaxies that have available metallicity measurements. The present-day stellar mass function of these galaxies is a good analog to the IGIMF at the time their overall population of stars formed. We show that the slope of the stellar mass function of the UFD galaxies measured for stars in the mass range [0.4, 0.8] M can only be reproduced when IMF variations of the same order as those measured in the present-day Milky Way are included. Our results suggest that the inclusion of IMF variations in models of galaxy formation and evolution is of vital importance in order to improve our understanding of star formation and star formation feedback effects on galactic scales.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3