XMM-Newton and Swift observations of supergiant high mass X-ray binaries

Author:

Ferrigno C.ORCID,Bozzo E.,Romano P.ORCID

Abstract

Wind-fed supergiant X-ray binaries are precious laboratories not only to study accretion under extreme gravity and magnetic field conditions, but also to probe the still highly debated properties of massive star winds. These include clumps, originating from the inherent instability of line driven winds, and larger structures. In this paper we report on the results of the last (and not yet published) monitoring campaigns that our group has been carrying out since 2007 with both XMM-Newton and the Swift Neil Gehrels observatory. Data collected with the EPIC cameras on board XMM-Newton allow us to carry out a detailed hardness-ratio-resolved spectral analysis that can be used as an efficient way to detect spectral variations associated with the presence of clumps. Long-term observations with the XRT on board Swift, evenly sampling the X-ray emission of supergiant X-ray binaries over many different orbital cycles, are exploited to look for the presence of large-scale structures in the medium surrounding the compact objects. These can be associated either with corotating interaction regions or with accretion and/or photoionization wakes, and with tidal streams. The results reported in this paper represent the outcomes of the concluded observational campaigns we carried out on the supergiant X-ray binaries 4U 1907+09, IGR J16393−4643, IGR J19140+0951, and XTE J1855−026, and on the supergiant fast X-ray transients IGR J17503−2636, IGR J18410−0535, and IGR J11215−5952. All results are discussed in the context of wind-fed supergiant X-ray binaries and ideally serve to optimally shape the next observational campaigns aimed at sources in the same classes. We show in one of the Appendices that IGR J17315−3221, preliminarily classified in the literature as a possible supergiant X-ray binary discovered by INTEGRAL, is the product of a data analysis artifact and should thus be disregarded for future studies.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Reference104 articles.

1. Distances to Galactic X-ray binaries with Gaia DR2

2. Discovery of a Transient X-Ray Pulsar, AX J1841.0$-$0536, in the Scutum Arm Region with ASCA

3. Barret D., Lam Trong T., den Herder J. W., et al. 2016, in Space Telescopes and Instrumentation 2016: Ultraviolet to Gamma Ray, eds. den Herder J. W. A., Takahashi T., & Bautz M., SPIE Conf. Ser., 9905, 99052F

4. SExtractor: Software for source extraction

5. The First IBIS/ISGRI Soft Gamma-Ray Galactic Plane Survey Catalog

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3