NuSTAR and Swift observations of two supergiant fast X-ray transients: AX J1841.0−0536 and SAX J1818.6−1703

Author:

Bozzo E1ORCID,Ferrigno C1ORCID,Romano P2ORCID

Affiliation:

1. Department of Astronomy, University of Geneva , Chemin d’Ecogia 16, CH-1290 Versoix , Switzerland

2. INAF, Osservatorio Astronomico di Brera , Via E. Bianchi 46, I-23807 Merate , Italy

Abstract

ABSTRACT Supergiant fast X-ray transients are wind-fed binaries hosting neutron star accretors, which display a peculiar variability in the X-ray domain. Different models have been proposed to explain this variability and the strength of the compact object magnetic field is generally considered a key parameter to discriminate among possible scenarios. We present here the analysis of two simultaneous observational campaigns carried out with Swift and NuSTAR targeting the supergiant fast X-ray transient sources AX J1841.0−0536 and SAX J1818.6−1703. A detailed spectral analysis is presented for both sources, with the main goal of hunting for cyclotron resonant scattering features that can provide a direct measurement of the neutron star magnetic field intensity. AX J1841.0−0536 was caught during the observational campaign at a relatively low flux. The source broad-band spectrum was featureless and could be well-described by using a combination of a hot blackbody and a power-law component with no measurable cut-off energy. In the case of SAX J1818.6−1703, the broad-band spectrum presented a relatively complex curvature which could be described by an absorbed cut-off power law (including both a cut-off and a folding energy) and featured a prominent edge at ∼7 keV, compatible with being associated to the presence of a ‘screen’ of neutral material partly obscuring the X-ray source. The fit to the broad-band spectrum also required the addition of a moderately broad (∼1.6 keV) feature centred at ∼14 keV. If interpreted as a cyclotron resonant scattering feature, our results would indicate for SAX J1818.6−1703 a relatively low-magnetized neutron star (∼1.2 × 1012 G).

Funder

ASI

INAF

University of Leicester

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3