The Gaia EDR3 view of Johnson-Kron-Cousins standard stars: the curated Landolt and Stetson collections

Author:

Pancino E.ORCID,Marrese P. M.ORCID,Marinoni S.ORCID,Sanna N.ORCID,Turchi A.ORCID,Tsantaki M.,Rainer M.ORCID,Altavilla G.ORCID,Monelli M.ORCID,Monaco L.

Abstract

Context. In the era of large surveys and space missions, it is necessary to rely on large samples of well-characterized stars for inter-calibrating and comparing measurements from different surveys and catalogues. Among the most employed photometric systems, the Johnson-Kron-Cousins has been used for decades and for a large amount of important datasets. Aims. Our goal is to profit from the Gaia EDR3 data, Gaia official cross-match algorithm, and Gaia-derived literature catalogues, to provide a well-characterized and clean sample of secondary standards in the Johnson-Kron-Cousins system, as well as a set of transformations between the main photometric systems and the Johnson-Kron-Cousins one. Methods. Using Gaia as a reference, as well as data from reddening maps, spectroscopic surveys, and variable stars monitoring surveys, we curated and characterized the widely used Landolt and Stetson collections of more than 200 000 secondary standards, employing classical as well as machine learning techniques. In particular, our atmospheric parameters agree significantly better with spectroscopic ones, compared to other machine learning catalogues. We also cross-matched the curated collections with the major photometric surveys to provide a comprehensive set of reliable measurements in the most widely adopted photometric systems. Results. We provide a curated catalogue of secondary standards in the Johnson-Kron-Cousins system that are well-measured and as free as possible from variable and multiple sources. We characterize the collection in terms of astrophysical parameters, distance, reddening, and radial velocity. We provide a table with the magnitudes of the secondary standards in the most widely used photometric systems (ugriz, grizy, Gaia, HIPPARCOS, Tycho, 2MASS). We finally provide a set of 167 polynomial transformations, valid for dwarfs and giants, metal-poor and metal-rich stars, to transform UBVRI magnitudes in the above photometric systems and vice-versa.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3