Stellar Variability and Distance Indicators in the Near-infrared in Nearby Galaxies. I. RR Lyrae and Anomalous Cepheids in Draco Dwarf Spheroidal

Author:

Bhardwaj AnupamORCID,Rejkuba MarinaORCID,Ngeow Chow-ChoongORCID,Marconi MarcellaORCID,Ripepi VincenzoORCID,Samantaray Abhinna Sundar,Singh Harinder P.ORCID

Abstract

Abstract The Draco Dwarf spheroidal (dSph) galaxy is one of the nearest and the most dark-matter-dominated satellites of the Milky Way. We obtained multiepoch near-infrared (NIR, JHK s ) observations of the central region of Draco dSph covering a sky area of ∼21′ × 21′ using the WIRCam instrument at the 3.6 m Canada–France–Hawaii Telescope. Homogeneous JHK s time-series photometry for 212 RR Lyrae (173 fundamental-mode, 24 first-overtone, and 15 mixed-mode variables) and five Anomalous Cepheids in Draco dSph are presented and used to derive their period–luminosity relations at NIR wavelengths for the first-time. The small scatter of ∼0.05 mag in these empirical relations for RR Lyrae stars is consistent with those in globular clusters and suggests a very small metallicity spread, up to ∼0.2 dex, among these centrally located variables. Based on empirically calibrated NIR period–luminosity–metallicity relations for RR Lyrae in globular clusters, we determined a distance modulus to Draco dSph of μ RRL = 19.557 ± 0.026 mag. The calibrated K s -band period–luminosity relations for Anomalous Cepheids in the Draco dSph and the Large Magellanic Cloud exhibit statistically consistent slopes but systematically different zero points, hinting at possible metallicity dependence of ∼ − 0.3 mag dex−1. Finally, the apparent magnitudes of the tip of the red-giant branch in I and J bands also agree well with their absolute calibrations with the adopted RR Lyrae distance to Draco. Our recommended ∼1.5% precise RR Lyrae distance, D Draco = 81.55 ± 0.98(statistical) ± 1.17(systematic) kpc, is the most accurate and precise distance to Draco dSph galaxy.

Publisher

American Astronomical Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3