Dynamical essence of the eccentric von Zeipel-Lidov-Kozai effect in restricted hierarchical planetary systems

Author:

Lei HanlunORCID,Gong Yan-Xiang

Abstract

Aims. The eccentric von Zeipel–Lidov–Kozai (ZLK) effect is widely used to explain dynamical phenomena in a variety of astrophysical systems. The purpose of this work is to clarify the dynamical essence of the eccentric ZLK effect by constructing an inherent connection between this effect and the dynamics of secular resonance in restricted hierarchical planetary systems. Methods. Dynamical structures of apsidal resonance were studied analytically by means of perturbative treatments. The resonant model was formulated by averaging the Hamiltonian (up to octupole order) over rotating ZLK cycles, producing an additional motion integral. The phase portraits under the resonant model can be used to analyse dynamical structures, including resonant centres, dynamical separatrices, and islands of libration. Results. By analysing phase portraits, five branches of libration centres and eight libration zones are found in eccentricity-inclination space. The analytical results of the libration zone and the numerical distributions of the resonant orbit agree very well, indicating that the resonant model for apsidal resonances is valid and applicable. Additionally, we found that in the test-particle limit, the distributions of flipping orbits are dominated by the apsidal resonances that are centred at an inclination of i = 90°. Conclusions. The eccentric ZLK effect is dynamically equivalent to the effect of apsidal resonance in restricted hierarchical planetary systems. The dynamical response of the eccentric ZLK effect (or of the effect of apsidal resonance) is to significantly excite the eccentricities and/or inclinations of test particles in the very long-term evolution.

Funder

National Natural Science Foundation of China

Publisher

EDP Sciences

Subject

General Medicine

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3