Secular dynamics of stellar spin driven by planets inside Kozai–Lidov resonance

Author:

Lei Hanlun12ORCID,Gong Yan-Xiang3

Affiliation:

1. School of Astronomy and Space Science, Nanjing University , Nanjing 210023, China

2. Key Laboratory of Modern Astronomy and Astrophysics in Ministry of Education, Nanjing University , Nanjing 210023, China

3. College of Physics and Electronic Engineering, Taishan University , Taian 271000, China

Abstract

ABSTRACT In many exoplanetary systems with ‘hot Jupiters’, it is observed that the spin axes of host stars are highly misaligned to planetary orbital axes. In this study, a possible channel is investigated for producing such a misalignment under a hierarchical three-body system, where the evolution of stellar spin is subjected to the gravitational torque induced from the planet inside Kozai–Lidov (KL) resonance. In particular, two special configurations are explored in detail. The first one corresponds to the configuration with planets at KL fixed points, and the second one corresponds to the configurations with planets moving on KL librating cycles. When the planet is located at the KL fixed point, the corresponding Hamiltonian model is of one degree of freedom and there are three branches of libration centres for stellar spin. When the planet is moving on KL cycles, the technique of Poincaré section is taken to reveal global structures of stellar spin in phase space. To understand the complex structures, perturbative treatments are adopted to study rotational dynamics. It shows that analytical structures in phase portraits under the resonant model can agree well with numerical structures arising in Poincaré sections, showing that the complicated dynamics of stellar spin are governed by the primary resonance under the unperturbed Hamiltonian model in combination with the 2:1 (high-order and/or secondary) spin–orbit resonances.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3