Cloud-cloud collision as origin of the G31.41+0.31 massive protocluster

Author:

Beltrán M. T.,Rivilla V. M.,Kumar M. S. N.,Cesaroni R.,Galli D.

Abstract

The G31.41+0.31 (G31) hot molecular core (HMC) is a high-mass protocluster showing accelerated infall and rotational spin-up that is well studied at high-angular resolution. To complement the accurate view of the small scale in G31, we traced the kinematics of the large-scale material by carrying out N2H+ (1–0) observations with the Institute de Radioastronomie Millimétrique 30m telescope of an area of ∼6 × 6 arcmin2 around the HMC. The N2H+ observations have revealed a large-scale (5 pc) hub-filament system (HFS) composed of at least four filamentary arms and a NNE–SSW velocity gradient (∼0.4 km s−1 pc−1) between the northern and southern filaments. The linewidth increases toward the hub at the center of the HFS reaching values of 2.5–3 km s−1 in the central 1 pc. The origin of the large-scale velocity gradient is likely a cloud-cloud collision. In this scenario, the filaments in G31 would have formed by compression resulting from the collision, and the rotation of the HMC observed at scales of 1000 au would have been induced by shear caused by the cloud-cloud collision at scales of a few parsecs. We conclude that G31 represents a HFS in a compressed layer with an orthogonal orientation to the plane of the sky, and it represents a benchmark for the filaments-to-clusters paradigm of star formation.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The Giant Molecular Cloud G148.24+00.41: gas properties, kinematics, and cluster formation at the nexus of filamentary flows;Monthly Notices of the Royal Astronomical Society;2024-01-08

2. Galactic ‘Snake’ IRDC G11.11−0.12: a site of multiple hub–filament systems and colliding filamentary clouds;Monthly Notices of the Royal Astronomical Society;2023-11-03

3. Observational Evidence of the Merging of Filaments and Hub Formation in G083.097+03.270;The Astrophysical Journal;2023-11-01

4. The GUAPOS project;Astronomy & Astrophysics;2023-08-28

5. Gas and star kinematics in cloud–cloud collisions;Monthly Notices of the Royal Astronomical Society;2023-04-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3