Observational Evidence of the Merging of Filaments and Hub Formation in G083.097+03.270

Author:

Panja AlikORCID,Dewangan Lokesh K.ORCID,Baug TapasORCID,Chen Wen PingORCID,Sun YanORCID,Sinha TirthenduORCID,Mondal SoumenORCID

Abstract

Abstract We uncover a hub–filament system correlated with massive young stellar associations in G083.097+03.270. Diagnosed with simultaneous 12CO, 13CO, and C18O line observations, the region is found to host two distinct and elongated filaments having separate velocity components, interacting spatially and kinematically, that appear to have seeded the formation of a dense hub at the intersection. A large velocity spread at the hub, in addition to a clear bridging feature connecting the filaments in velocity, indicate the merging of filaments. Along the filament axis, the velocity gradient reveals a global gas motion with an increasing velocity dispersion inward to the hub signifying turbulence. Altogether, the clustering of Class I sources, a high excitation temperature, a high column density, and the presence of a massive outflow at the central hub suggest enhanced star formation. We propose that the merging of large-scale filaments and velocity gradients along filaments are the driving factors in the mass accumulation process at the hub that have sequentially led to the massive star formation. With two giant filaments merging to coincide with a hub therein with ongoing star formation, this site serves as a benchmark for the “filaments to clusters” star-forming paradigm.

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3