Scaling relations of z ∼ 0.25–1.5 galaxies in various environments from the morpho-kinematics analysis of the MAGIC sample

Author:

Mercier W.ORCID,Epinat B.ORCID,Contini T.,Abril-Melgarejo V.ORCID,Boogaard L.ORCID,Brinchmann J.ORCID,Finley H.,Krajnović D.ORCID,Michel-Dansac L.,Ventou E.,Bouché N.,Dumoulin J.,Pineda J. C. B.ORCID

Abstract

Context. The evolution of galaxies is influenced by many physical processes, which may vary depending on their environment. Aims. We combine Hubble Space Telescope (HST) and Multi-Unit Spectroscopic Explorer (MUSE) data of galaxies at 0.25  ≲  z  ≲  1.5 to probe the impact of environment on the size-mass relation, the main sequence (MS) relation, and the Tully-Fisher relation (TFR). Methods. We perform a morpho-kinematics modelling of 593 [O II] emitters in various environments in the COSMOS area from the MUSE-gAlaxy Groups In Cosmos survey. The HST F814W images are modelled with a bulge-disk decomposition to estimate their bulge-disk ratio, effective radius, and disk inclination. We use the [O II]λλ3727, 3729 doublet to extract the galaxies’ ionised gas kinematics maps from the MUSE cubes, and we model those maps for a sample of 146 [O II] emitters, including bulge and disk components constrained from morphology and a dark matter halo. Results. We find an offset of 0.03 dex (1σ significant) on the size-mass relation zero point between the field and the large structure sub-samples, with a richness threshold of N = 10 to separate between small and large structures, and of 0.06 dex (2σ) with N = 20. Similarly, we find a 0.1 dex (2σ) difference on the MS relation with N = 10 and 0.15 dex (3σ) with N = 20. These results suggest that galaxies in massive structures are smaller by 14% and have star formation rates reduced by a factor of 1.3 − 1.5 with respect to field galaxies at z ≈ 0.7. Finally, we do not find any impact of the environment on the TFR, except when using N = 20 with an offset of 0.04 dex (1σ). We discard the effect of quenching for the largest structures, which would lead to an offset in the opposite direction. We find that, at z ≈ 0.7, if quenching impacts the mass budget of galaxies in structures, these galaxies would have been affected quite recently and for roughly 0.7 − 1.5 Gyr. This result holds when including the gas mass but vanishes once we include the asymmetric drift correction.

Funder

Programme National Cosmologie et Galaxies

ANR FOGHAR

OCEVU Labex

A*MIDEX project

Ministry of Science, Technology and Innovation of Colombia (MINCIENCIAS) PhD fellowship program

Vicerrectoría de Investigación y Extensión de la Universidad Industrial de Santander

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Stellar angular momentum of disk galaxies at z  ≈  0.7 in the MAGIC survey;Astronomy & Astrophysics;2023-09

2. A MUSE view of the multiple interacting system HCG 31;Monthly Notices of the Royal Astronomical Society;2023-04-14

3. MEGADES: MEGARA galaxy disc evolution survey;Astronomy & Astrophysics;2023-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3