Asteroseismology of evolved stars to constrain the internal transport of angular momentum

Author:

Moyano F. D.ORCID,Eggenberger P.,Meynet G.,Gehan C.ORCID,Mosser B.,Buldgen G.,Salmon S. J. A. J.

Abstract

Context. Asteroseismology provides constraints on the core rotation rate for hundreds of low- and intermediate-mass stars in evolved phases. Current physical processes tested in stellar evolution models cannot reproduce the evolution of these core rotation rates. Aims. We investigate the efficiency of the internal angular momentum redistribution in red giants during the hydrogen-shell and core-helium burning phases based on the asteroseismic determinations of their core rotation rates. Methods. We computed stellar evolution models with rotation and model the transport of angular momentum by the action of a sole dominant diffusive process parameterised by an additional viscosity in the equation of angular momentum transport. We constrained the values of this viscosity to match the mean core rotation rates of red giants and their behaviour with mass and evolution using asteroseismic indicators along the red giant branch and in the red clump. Results. For red giants in the hydrogen-shell burning phase, the transport of angular momentum must be more efficient in more massive stars. The additional viscosity is found to vary by approximately two orders of magnitude in the mass range M ∼ 1–2.5 M. As stars evolve along the red giant branch, the efficiency of the internal transport of angular momentum must increase for low-mass stars (M ≲ 2 M) and remain approximately constant for slightly higher masses (2.0 M ≲ M ≲ 2.5 M). In red clump stars, the additional viscosities must be an order of magnitude higher than in younger red giants of similar mass during the hydrogen-shell burning phase. Conclusions. In combination with previous efforts, we obtain a clear picture of how the physical processes acting in stellar interiors should redistribute angular momentum from the end of the main sequence until the core-helium burning phase for low- and intermediate-mass stars to satisfy the asteroseismic constraints.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3