Detectability of Axisymmetric Magnetic Fields from the Core to the Surface of Oscillating Post-main-sequence Stars

Author:

Bhattacharya ShatanikORCID,Das Srijan BharatiORCID,Bugnet LisaORCID,Panda Subrata,Hanasoge Shravan M.ORCID

Abstract

Abstract Magnetic fields in the stellar interiors are key candidates to explain observed core rotation rates inside solar-like stars along their evolution. Recently, asteroseismic estimates of radial magnetic field amplitudes near the hydrogen-burning shell (H-shell) inside about 24 red giants (RGs) have been obtained by measuring frequency splittings from their power spectra. Using general Lorentz-stress (magnetic) kernels, we investigated the potential for detectability of near-surface magnetism in a 1.3 M star of supersolar metallicity as it evolves from a mid subgiant to a late subgiant into an RG. Based on these sensitivity kernels, we decompose an RG into three zones—deep core, H-shell, and near-surface. The subgiants instead required decomposition into an inner core, an outer core, and a near-surface layer. Additionally, we find that for a low-frequency g-dominated dipolar mode in the presence of a typical stable magnetic field, ∼25% of the frequency shift comes from the H-shell and the remaining from deeper layers. The ratio of the subsurface tangential field to the radial field in the H-burning shell decides if subsurface fields may be potentially detectable. For p-dominated dipole modes close to ν max , this ratio is around two orders of magnitude smaller in subgiant phases than the corresponding RG. Further, with the availability of magnetic kernels, we propose lower limits of field strengths in crucial layers in our stellar model during its evolutionary phases. The theoretical prescription outlined here provides the first formal way to devise inverse problems for stellar magnetism and can be seamlessly employed for slow rotators.

Funder

EC ∣ Horizon Europe ∣ Excellent Science ∣ HORIZON EUROPE Marie Skłodowska-Curie Actions

Department of Atomic Energy, Government of India

Publisher

American Astronomical Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3