Determining the dust environment of an unknown comet for a spacecraft flyby: The case of ESA’s Comet Interceptor mission

Author:

Marschall RaphaelORCID,Zakharov Vladimir,Tubiana Cecilia,Kelley Michael S. P.,van Damme Carlos Corral,Snodgrass Colin,Jones Geraint H.,Ivanovski Stavro L.,Postberg Frank,Della Corte Vincenzo,Vincent Jean-Baptiste,Muñoz Olga,La Forgia Fiorangela,Levasseur-Regourd Anny-Chantal,

Abstract

Context. An assessment of the dust environment of a comet is needed for data analysis and planning spacecraft missions, such as ESA’s Comet Interceptor (CI) mission. The distinctive feature of CI is that the target object will be defined shortly before (or even after) launch; as a result, the properties of the nucleus and dust environment are poorly constrained, and therefore make the assessment of the dust environment challenging. Aims. The main goal of the work is to provide realistic estimations of a dust environment based on very general parameters of possible target objects. Methods. Contemporary numerical models of a dusty-gas coma were used to obtain spatial distribution of dust for a given set of parameters. By varying parameters within a range of possible values, we obtained an ensemble of possible dust distributions. Then, this ensemble was statistically evaluated in order to define the most probable cases and hence reduce the dispersion. This ensemble can not only be used to estimate the likely dust abundance along a flyby trajectory of a spacecraft, for example, but also to quantify the associated uncertainty. Results. We present a methodology of the dust environment assessment for the case when the target comet is not known beforehand (or when its parameters are known with large uncertainty). We provide an assessment of dust environment for the CI mission. We find that the lack of knowledge of any particular comet results in very large uncertainties (~3 orders of magnitude) for the dust densities within the coma. The most sensitive parameters affecting the dust densities are the dust size distribution, the dust production rate, and coma brightness, often quantified by Afρ. Further, the conversion of a coma’s brightness (Afρ) to a dust production rate is poorly constrained. The dust production rate can only be estimated down to an uncertainty of ~0.5 orders of magnitude if the dust size distribution is known in addition to the Afρ. Conclusions. To accurately predict the dust environment of a poorly known comet, a statistical approach needs to be taken to properly reflect the uncertainties. This can be done by calculating an ensemble of comae covering all possible combinations within parameter space as shown in this work.

Funder

Swiss National Science Foundation

European Research Council

Italian Space Agency

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3